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JNVESTIGATION OF WING-AILERON FLUCTER 

CiTAR4CTESISTICS OF A l/k-SGALZ DY?%4MIC 

MODEL OF !THE X-I23 A W L A N 3  

By FTederick W. Gibson, William B. Igoe, 
and P. R. Maloney 

Tests  to  determine some of the  f lut- ier   character is t ics  of e l /4-  
scale dynamic model of the  X-= airplane w i n g  end a i le ron  were made i n  
the Lengley 16-foot  kransonic  tunnel. The w i a g  was tes-led as pa r t  of 
a complete model of the sirplme over a Mach  number range of 0.h t o  1.05. 
Fuselage engles of &tack were v&ried f'rm -14O t o  15' at low Mach num- 
bers and from -5' t o  at higher Mach numbers. Static  loadiEg and 
vibration tests were a l so  performed i n  still air. 

No stall  f l u t t e r  o r  c l a s s i c a l   f l u t t e r  was encountered; however, 
the test results  indicate  that   unstable aeroydna,mic -ping is present 
on the  a i lerons at transonic  speeds. The ai leron  f lut ter   response t o  
this unstable  aerodmTic  dmping is infl-cenced by the  free play in. the 
aileron  control system - increesing  f ree   plzy expands the   f lu t te r   reg ion .  
It was  shown tht t h i s   f l u t t e r  response  could  be  eliminated by adding 
viscoas  darning  directly  to  the  ailerons.  

IlLTRODUCTION 

The Low-altitude f l i gh t   p rog rm  fo r   t he  X - I 3  a i rp lme  requi res  that 
t h e   a i q l s n e  be flm- to  susersonic  speeds at a minimum al.%itude of 
30,000 fee t .  Ih- eddition, ~l l?  air hunch  of the X-LE ai; 3O,OOO feet at 
a Mach nunber  of 0.6 is  required. SmAe l imi ted   emlyt ice l  and experl- 
mental  investigations  indicated that the   a i le ron   to rs ion   f lu t te r ,   a i le ron  
single-degree-of-freedom f l u t t e r   o r  buzz,  and s ta l l - f lu t te r   charac te r -  
i s t i c s  of the  wing were mzrginal. As a consequence  of these  preliminexy 
indications  of smdl f l u t t e r   m r g i n s ,  it was deemed desirable   to   repro-  
duce i n  a model the aileron  eontrol system of the a i r c r a f t ,  as w e l l  as 
other wing properties,  in  as great detail &s nossible, in order t o   a t t a i n  
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a rea1istf.c  asproxkmtion of t i e  dynamic bekavior of the  full-scale 
w i n g ,  ai leron  control system, end s i le ron  dampers. merefore, a 1/4- 
scale  dynanic  aodel of the X-LF: wing w-es constructed  to meet these 
requirements and tes ted  &s par t  of the complete-model configuration 
in   the  Langley ~6-foot   t ransonic   tunnel .  

The purpose of t h i s  paper i s  to   p reseot   the   resu l t s  of the ground 
vibration and  wind-tunnel t e s t s  of t h i s  model. 

SmBOLS 

D damping, lb-sec/ft 

EI w i n g  beEding r igidi ty ,   lb- in .  2 

GJ wing torsional  r igidity,   lb-in.2 

M Mach nmber 

P mass density,  slugs/cu ft 

0) freqcency of oscillation,  rsdFans/sec 

h geoxetrk  scale   factor ,  zMIZF 

2 general dimension  of le+h 

r b  T ~ S S  per -mit length,  lb-sec2/sq  in. 

I mss plar mment of Fcertia per mit length,  lb-sec* 

g structural  daxsing  coefficient 

Subscripts: 

M moOel 

F f u l l   s c a l e  
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Selection of Scale  Factors 

It was desired  to  design  the model  wing t o  be e true-speed  dwanic 
repl ica  of the X - 1 E  airplane wing. Tlze quant i t ies   avai lable  f o r  scaling 
were l ine= dimensions, m s s ,  noments of inertis,  frequencies, and s t i f f -  
nesses of the  ful l -scale  wing. While s t ruc tura l  damping w a s  not scaled 
direct ly ,  it was hoped tbt a f a i r l y  complete physical  regresentation 
of t h e   a i r p l a e  wing s t ructure  would give a close  representation of the  
ful l -scale   a i rplane damping. In  order t o  reduce  scale  efrects,   the 
model was made as  large as possible  for the Langley  16-foot  transonic 
t u n e l .  This resu l ted   in  a geometric  scale  factor A of l/k. 

I n  designing  the model, it was desirable t o  simulate  the  proposed 
operztional  al t i tude  conditions of the  full-scale  airplane.   Since a 
ter-tetive  f l ight  plan f o r  the X-IE airplane  cal led  for  it t o  be  launched 
at an a l t i t ude  of 30,000 f e e t  m-d flown through the  transonic-speed  range 
e% that a l t i tude ,  t h i s  was considered. t o  be Vie desired  ful l -scele  a l t i -  
tude t o  be  simulated. The 16-foot transonic tmael has a var ia t ion of 
test-section air density and a corresponding  variation of density al t i-  
tude  with Mach nw!er,  as shown in   f igure  1 for  atmospheric  stagnetion 
conditions. 1% was desired  to  satisfy  the  Inass-density-ratio  conditions 
f o r  the model at M = 1.0 where the  equivalent  density  alt i tude of the 
w i d  tunnel corres-gonded t o  approximately 15,000 fee t .  A t  an a l t i t u d e  
of 15,000 feet   the   densi ty  is approxlh te ly  68 gercent  greeter than the 
density at 30,000 feet;   therefore,  t o  setis-fy  the  mss-density-ratio 
conditions,  the model shauld have been 68 percent  heavier tham t h e   f u l l -  
scale  airplane.  In  order t o  achieve  the same aeroelast ic   effects  under 
the  airloads,   the model should krave been 68 percext   s t i f fer  also. How- 
ever,  preliminary  studies of the  nodel  desigp showed that the maximum 
practical   tncrease  possible in node l   s t i f fnes s   ( fo r   t he   mte r i a l  and 
t n e  of construction  selected) w a s  about 50 percent;  therefore, a fac tor  
of 1 .5  was accepted as a design  f igme  for  the  increase in m o d e l  density 
md s t i f fness .  The density  altFtude  for which the  ful l -scale  airplane 
was simulated  by  the model i n   t he  wind tunnel f o r  the  density  fzctor of 
1.5 is  a l so  shown in   f igure 1. The following  table lists the  scaled 
quantitFes  in  terms of the  geometric  scale  fector A and includes  the 
1.5 s t i f fnes s  and density  factor: 

Q m t i t y  Scale  factor 

Mass per  unit  length, ~ ~ 1 9  . . . . . . . . . . . .  1.5 x A* = 1.5/16 
Mess moment of iEertia  per unit length, IM/IF . . .  1.5 x h4 = 1.5/256 
F'requercy, q,/q . . . . . . . . . . . . . . . . .  1/A = 4 
Bending s t i f fness ,  EIM/EIF . . . . . . . . . . . .  1.5 x A4 = 1.5/256 
Torsion  stiffenss, (GJ)M/(GJ)F . . . . . . . . . .  1.5 x k = 1.5/256 
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Full-scale Design  and Construction 

The airplane wing has an NACA 64AO04 (modified) a i r fo i l   sec t ion ,  
2' incidence  with  respect to  the  fuselage  with  zero t w i s t ,  a t ape r   r a t io  
of 0.5, an  aspect   ra t io  of 4, and zero sweep of the 40-gercent-chord 
l lne .  For structural  reasons, the a i r fo i l   s ec t ion  is  nodified so t h a t  
it has a s t ra ight   taper  from the  70 percent  chord  l ine  to the t r a i l i n g  
edge, which kas e. t h i c h e s s  of 0.36 percent of chord. The ai leron i s  
30 percent of the wing chord  and  extends  spanwise from 68 percent t o  
98 percent of the  w i n g  semispan. 

The construction  chmacterist ics of the  full-scale wing are i l l u s -  
t r a t e d   i n   f i g z e   2 ( a )  . The leading edge is  solid,  and spar and web 
members are sol id  and nearly  rectangular  sections,  the web menbers being 
staggered as shown. One-eighth-inch stainless-steel  doublers  are smd- 
wiched  between the upper  and lcwer  skins and the  spars and extenc  oat 
frorc t he   ce l t e r   l i ne  over approxhately 42 percent of the semispan. The 
skin i s  f. continuous  sheet  having a t h i c h e s s  of 0.608 percent of the 
chord  outboard of the 2O-percent-sexispan s ta t ion  and a constant  thick- 
ness of 0.5 inch  inboard of th&t sta t ion  and is designed t o  provide 
a l l  the  s t rength  in   the wing. The leading edge, skin, webs, and spars 
axe 7075-T alminum  alloy. The ri-ght and l e f t  semispans of the air- 
plane wing are spliced  together at the  center  l ine.  The w i n g s  are  f ixed 
to   the   fuse lage  w + t h  four-point  smpension as shown in   f igme  2(b) .  The 
ai leron bas chordwise tapered  skins on Z-section ribs rearward of the  
hinge l i ne .  The leading edge has 2. lead cap along  the span. The aileron 
i s  essent ia l ly   s tee l  forwesd of the hinge line  with  the  exception of the 
lead cap  and i s  s t a t i c a l l y  balanced  abcut  the  hinge  line. 

The aileron  control  systex is wholly  xechanical,  cmprised of a 
system  of  yokes, be l l  cranks, idlers, and push-pull  rods.  Figure 2( c)  
shows the  general  configuration of the  full-scale  ai leron  control system. 

Mcdel Wing Design and Construction 

I n  order t o  sztisfy the requirements imposed on the model by the 
tunnel CondLtions, the  model was designed and constructed  in  the  fol-  
lowing maner:  The spars and web menbers were nachined as an integral  
unit fronz a sheet of aluminum, and the  skin  thickness was increased 
from 0.608 t o  1.0 percent of the chord. I n  order t o  maintain  the 
4-percent-thic:iness ratio,   the  material  could  only be acded inside  the 
wing near  the  neutral  axis where the  effect  on the moxent of i ne r t i a  
i s  reduced. As a result, the bending and tors ional   s t i f fnesses  were 
lncreased by approxinately 50 percent. A s  previously  noted, this 
ir-crease was f i n a l l y  accepted as the ~ a x i m u n  obtainable inasmuch as 
it was necesswy to   r e t a in   r i b s ,   spa r s ,  an6 space for   the   ins ta l la t ion  
of the  a i lero2  control  system. 

d 
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It wodd also have  been desirable  to  place  the doublers inside  the 
wing &s on the  full-scale  airplsne,  but, because of the  thickened  skin, 
the  doublers would  have been so close t o  the  neutral axis that the i r  
effect would have been very smll. Therefore, t o  min-hize the amount 
of m t e r i a l  that would be needed f o r  the  doublers t o  bring  the wing up 
t o  the  desired  stiffhess,  the core in   the =ea of the  doublers was l e f t  
so l id  and the rema3hLng required  stiffness added  by bonding and riveting 
the  appropriate  thickness of doublers on the oiztside of the wing .  This 
modification cbar-ged the I l r a x i m m  thickness  rztio from 4 percent t o  about 
4.5 prcent   in   the   mea  of the  doublers.  Figure 3(a)  i l lus t ra tes  the 
construction  details of the model wing. 

The r ight  and l e f t  semispms of the model wFng were made iEtegral 
to avoid  raking a splice. The stifi’ness of the  full-scale  sirplane 
splice w a s  simuleted. The wings  were fixed t o  the  fuselage  with a 
four-point  suspension system the sane as that f o r  the  airplane  as shown 
in  figure  2(b).  Figure 3(b) is  a sketch of the corrplete model xounted 
o ~ l  the sting. 

The aileron system of the model, l ike  that of the  airplane is  wholly 
xechanical and conteins  beerings, idlers, b e l l  cranks, and push-pull rods 
which  were scaled as closely  in  size  as  the  available beezing sizes would 
pernit .  The  model ailero-n- systen is shown in  f igure 3( c) . 

Instruzerbation of the Model 

Tie  nodel wing  was instrumented t o  obtaic irstantareous w i n g  bending 
and torsion  strains and the  aileron w a s  instrumerrted t o  obtain  rotatiofial 
angles about i t s  hinge l iae .  Three bending end Yozee torsion  strain 
gages were located  near  the wing-fuselage juncture of each senispan_ as 
shown i n  figure 4. Three positim  indicators, one flexible-beem t n e  
and txo inductance  type,  located as shown in  f igure 4, were instal led 
on the  right  eileron. A- single flexible-beam-type indicetor was attached 
t o  t he   l e f t  wing aileron. 

The flexible-beam-type indicetor  consisted of a srrtall flexible beam 
on which w a s  bonded a s t ra in  gage. One end of t h i s  beam was fixed t o  
the wing structure, and the  other end was connected t o  the b e l l  crenk 
of the  aileron  control  systen s o  that the motion of the  control system 
caused bending of the be=. This indicator w&s useful  in  obtaining 
records of the  antis7pmetric  lrotion of‘ %he ailerons at low frequencies. 

. 

The electr ical  ioductance-type indicator  consisted of two coi ls  
md a netal  vane in   the field of the  coils. RotatiOD of the vane o r  
coils  altered  the  output  signal of the  circuit .  A t  the inboard end of 
the  aileron, the  coi ls  were fixed  to  the wing and t h e   v a e  moved with 
the  eileron, while &t the outboezd end of the aileron the vane wes fixed 
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aEd the   co i l  xoved. The frequency  response of t h i s   t s e  of indicator 
was f la t  t o  over 5CO cps. 

Ground Tests 

I n i t i a l  ground vibration aECi s ta t ic   loading   tes t s  of the  l/k-scale 
nodel were made t o  determine the  natwal frequencies and the   s t i f fness  
an& nodal  characteris-iics of the  wing, si leron, and aileron  control 
system and t o  calibrate  the  strain-gage and position-indicator  systems. 
The model w i n g  motmted for ground tes t ing  i s  shown in   f igure  5 .  In   the 
ground t e s t s  of the model the  mpport  coEditions of the ground t e s t s  on 
the  full-scale  airplane were simulate6 as closely es was possible. For 
the  syxmetric f irst  bending xode and symmetric and aspmetr ic   tors ion 
modes the  section of the  full-scale Tuselage  containing  the wing was 
mounted by bolting a r i g i d   s t e e l   p l a t e   t o  each end of the  fuselage  sec- 
t i on  and securhg  these  glates   to   the  concrete  :hangar apron by means of 
a s teel   s t ructure .  For the model thts  condition was s b L a % e d  by  securing 
the  faselage  s t ructure   to  a s t e e l  bed p h t e .  For the  asyrmetric first 
bendhg node the ful l -scsle   a i rplane was scpFor%ed on i t s  landFng g a r  
with 50 percect of n o m 1  air pressure  in   the  t i res .   In   order   to  simu- 
l a t e   t h i s  conditio?l,  the  l/L-scaie m o d e l  vas xounted on a dummy s t ing  
which allowed t ranslat ional  motion. 

An opt ica l  system w a s  used t o  measure deflections  of  the wing a?-d 
aileron under s ta t ic   loads and, xith the aid of a sk?airer, t o  m&e 
frequency-reagonse  surveys of the wing and ailerons.  

'Two types of shekers were csed to   ob ta i9  xfreqzency-response curves 
and i;o rrake s tzdies  of the mcde characteristics.  Electromam-etic shakers 
were used t o  stuiiy wing vibration  characterist ics.  Two of these  shdsers 
were fastened to   t he  wing syrmetrically  with  respect  to  the  fuselage 
center  l ine at points   c lose  to   t3e wing-fuselage j m c t - n e  on the  leading 
edge.  (See f i g .  5 .  ) Ths, with  the  shakers  in phase or 180' out of 
p k s e ,  the wir?gs could be excited  spmetrtcally or  asymnetrically. 
BecEzse the  electromgnetic  shakers added considerable mass t o   t h e  
ailercns,  they could  not be used to  obtain  the  aileron  frequencies.  
Therefore, a p2eurnat5c shaker vas develcped which exsloyed  pulsed air- 
s t reams  directed  a l temtely  against  the ugper ar?d lower surfaces of 
the  ailercr?. This air shaker w a s  used  very  successfully in  obtaining 
frequency-respome  surveys of both  the model and full-scale  ai lerons.  

Model w i n g  properties.- The degree of d q l i c a t i o n  of the  physical 
properties of the  ful l -scale  w i r g  that was attained  in  the  l /k-scale 
model is shorn- in   f igures  6 t o  9 m-d i n  tables I a d  11. Teble I corn- 
pares  the  full-scale and l/$-scale  nodal  patterns en6 resonant  frequen- 
cies of' the  symme-kric and zsymxetric first bending md  first  torsion 
modes where close  similari ty i s  shown. Figure 6 coqares   the  spanwise 
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weight dis t r ibut ions which were determined by computations  based on the 
wing designs. The shula t ion   here  is only fair. Figure 7 compares the  
tors ional   s t i f fness   dis t r ibut ions where t h e   s i m i k r i t y  is f a i r l y  good 
although  the  st iffness at the octboard  half of the semispan of the  model 
i s  sonewhat low. Figure 8 presents the measured values of E1 of the 
l/l+-scale wing r igh t  and le f t  semispans a d  the scaled computed values 
of the  ful l -scale  w i n g .  In this c&se the s imi la r i ty  is very good. 

Model aileron  properties.-  The aileron  systen WES noElinear,  the 
nonl lneai ty   being caused by the free play i n  the vaxious l i m e s  of 
the  control  systen. 

The ai leron  s t i f fnesses ,  as gresented in tab le  11, were obtained , 
with  the system  locked at the  center   l ine of the  fuselage, and the 
aogular motiorrs r e f e r r e d   t o  are aileron  rotations  about the hinge  ltne. 
Model s t i f fness  at the be l l  crank  (see  fig. 3(b)) is 88 percent of the 
desim value. However, two values of s t i f fnes s  were measured at the  
root of the   fu l l - sca le   a i le ron  at different  times. The larger  value was 
fo-and after the  a i leron system ha& been reworked t o  eliminate xuch of 
t he   ex i s t ing   f r ee   phy .  Tne source of’ the  discrepancy  could  not  be 
ascertained,  but,  because of t h e   s i z i h x i t y   i n  the  scaled  frequency of 
the ful l -scale  an& the  frequency of tine l/4-scale  ailerons, it w a s  
thought thet the lower  vaiue cf stiff’ness of the   fu l l - sca le   a i le ron  a t  
the root w a s  the  more re l iab le .  

Tse s t a t l c  end dynaxic chazacterist ics of the  model a i lerons were 
found t o   v m y  w i t h  the  amount of f ree   play  in   the  a i leron  control  system 
m d  w i t h  the &mount of excitation  force  applied  to  the system. The f ree  
play depended upon tbe  t ightness of f i t  of the pinned jo in t s  in  the  sys- 
tem. The exci ta t ion  force w a s  reguleted by the air pressure i n  the  
p n e u r ~ t i c  shaker. The chmacter i s t ics  of the  eileron  systen  are i l lus-  
t r a t ed   i n  figure 9. 

Figure g(a)  shows the relat ionship between xoxent  ebout t h e   h h g e  
l ine  and aileron  aeflection. The var ia t ion i s  linear  excegt  for a step 
in the  deflection which indicates the amom6 of f ree   p lay   in  the system. 
This c’mracterist ic of the  model a i leron is  very s i m i h r  t o  thet which 
Was found on the  Tull-scale  aileron. 

Figme g(b) shows the ver ia t ion of  amplitucle with  frequency and 
the effec t  of the  mgnitude of exc i ta t ion   force   aps l ied   to  the ai lerons 
on the  resocmt  frequency and amplitu6e. Not only  the  amplitude  but 
also the  resonant  frequency  increases  with  increased  excitation  force. 
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Figure  g(c)   i l lust rates   the  effect  of exci ta t ioc  force on the  reso- 
nant  frequency for various  &egrees of f ree   play  in  the system. Again 
it i s  show- that, increased  excitation  force  causes  increased r e s o m t  
frequency. It my also  be  seen t h a t  the  res0nm-L frequency is  decreased 
as the   f r ee   s l ay  is  increased. 
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I_n_ figure g(d), freqcency-response  curves for several   different 
values of excitation  force  are shown fer both  the nodel and t’ne full-  
scale  ai lerons.  This serves as an lndication of the  s imilar i ty  of the 
combined ef fec ts  of dmqing,  stiffness, and i c e r t i a  cf the two systems. 

The burlrrp i n   t h e  frequency-response  curves below tne resonant fre- 
qcency of bcth  the  ful l -scale  ad l/k-scale  ailerons was caused  by some 
excitation of FL vlng  rode. 

The ef fec ts  of f r ee  slay m d  amplitude of osci l la t ion on the  reso- 
m n t  frequency of the aileron  systex, as found i n  this investigation; 
a r e   i n  agreement with the resuLts of an a ~ n z l y ~ i c a l  and experimental 
investigatioa  reported  in  reference 1. 

Aileroz Dampers 

-The damping reqxired t o  overcome the maxixx-z unstable aercdynamic 
dw,ping on the  fJ l l -scale   a i leron was estimated f r o n t h e  data of refer-  
ence 2. Aileron dangers were then designed f o r  the model scaled f rcm 
the  ful l -scale  dampers on the basis of % = 1.%A2 where D repre- 
sents  dmpiEg  in so-md-seconds per  fcot and M and F r e fe r   t o   t he  
xodel  and  fiLl-scale dampers, resgectively. This re la t ion  was derlved 
f r o m  the single-degree-of-freedon;  equation of xotior? f o r  the  alleron. 
The d q e r s  were piston-type wCth a c leuance  between piston and cylin- 
der. The scpply of o i l   i n  tbz  dazper wzs mintained by pressure  *iring 
=eration. A cutaway sketcb of the daxper i s  shmn i n  figure 10. 

The dangers were f irst  instal led  inside tlhe  wing w i t h  one end fixed 
t o   t h e  wing and the other end connected t o   t h e   b e l l  zrmk as s h m  i n  
figure 11( a) . After  nmeroils tests on the g r o a d  and in   t he  wind tunnel 
it wes apgerent tkat the  daxpers  located in this  pcsiticm were ineffec- 
t ive  in  el ininaticg  the  f lu+,ter  ccnditio?, .  Repeated gromd tests showed 
that xi tb  tke sene forcing  functio2, tl;e q l i t u d e  of osci l la t ion was 
increased xheg the d&Kpers vere  installed  in  this  SosFtion. It was 
found that the Qnarnics  of the systex  (inciufcbg  t3e  free  play) would 
r-st allow  sufficierxt.  motion of the dampers in   t he  ranges of anplitu.de 
of the  ailerons which were of interest.  Therefore,  the dampers  were 
moated  outsice tine wing x i t h  or-e end fixed t o  the w i n g  and the  other 
e3-d connected d i r ec t ly   t o   t he   e i l e ron  :?om zs skmm in   f igure U ( b ) .  
Repeated gromd t e s t s   w i th   3aqe r s   i n   t h i s   sos i t i on  showed a decrease 
i n  the snqlitLde of o s c i l h t i o n .  It w c s  found t:mt the  s te t ic   pressure 
of t he   f l u id   i n   t he  dazrqers had no epparent  effect on the  freqcency 
response of the system. 



St ruc tu ra l   Dwing  of the  Ailerons 

The determfnation of t h e   s t r u c t u r e 1   h D i n g  of the   s i le ron  system 
preseEted  difficulty because of the  nonlinearity  caused by the   f ree   p lay  
i n   t h e  system. Measurements were d e  of the s t r u c t u r a l   a w i n g  by var- 
ious  nethods both including and exc1udiE.g the  f ree   play.  The  damping 
ccefficient g wzs fomd t o  be  of the  order of 0.1 f o r  an a i le ron   ro ta -  
t iorel   axpl i tude of about 0.6~. 

WIND-TITNN"J;  TESTS hi RESULTS 

For t'ne wind-tmnel  tests,   the  lf4-scale m o d e l  of the  X-IE airplane 
w i n g  was assembled t o  8;11 essent ia l ly   r ig id   sca le  moael of t he  X - U  fuse- 
lage mci expennage . The nodel vas s-Licg momted i n   t h e  16-foot tran- 
sonic  tunnel 2s show- i n   f i g u r e  12 and tested  throughout  the  ranges of 
angles of a t tack and Mach 3?urkers she" i n   f i g u r e  1-3 t o  study  the s ta l l  
f lu t te r ,   c less ica l   T lu t te r ,  and a i l e ron   f l u t t e r   cha rac t e r i s t i c s  of  the 
wing-zileron  system.  During the wind-tunnel tes t s ,   the   a i le ron   cont ro l  
coli;v- (see fig. 3(b)) was centered  by a veak sp r i rg  so that the   a i lerons 
were centered  for  zero  load  conditions. A nulsing  devfce was used t o  
give  the  ailerons zn asyrmetric  deflection  pulse of a p p r o x h t e l y  lo 
under  wind-off conditions. The p-LLsing Cevice was effect ive at low tun- 
nel  airspeeds,  but at higher  tunnel  airspeeds, where wind-tunnel  turbu- 
lence  contributed a fairly luge   exc i t i ng   fo rce   t o   t he   ac l e rons ,   t he  
aileron  pulser w a s  re la t ively  ineffect ive.  

No c l a s s i ca l   f l u t t e r   o r  stall  f l u t t e r  we6 encountered -Lhroughout 
t he   rGge  of the tests; however, an i n s t a b i l i t y  was eqer ienced  at t ran-  
sonic Mach n-mbers w5ich involved  considerable  aileron motion m-d some 
wing torsional  xotion.  Unfortunately, when aileror, ar?d wing motion 
occmred  shcltaneously,   there 'Has no way of determining def in i te ly  
whether the phenoxenon was e i le ron- tors ion   f lu t te r  or a i le ron  buzz; 
however, it w e s  the  concerted  opinion of the  investigators t ba t  it w e s  
a i le roc  buzz & r d  therefore is referred t o  as such i n   t h e  remainder of 
thFs  paper. 

Tine-history  recards of the  signal  outputs of t h e   s t r a i n  gages and 
posit ion  indicators were Fade on an oscil1ogrs;ph. A typ ice l  example of 
an oscillogreph  record  taken  during the occurrence of a i le ron  buzz 5s 
s b m  in   f i gu re  14. 

The r e s u l t s  of the  wind-tmnel  tests showing t'ce ef fec ts  of free 
play,  angle of at tack,   a i leron  tabs ,  an6 aileror- vFscous dampers on 
ai leron buzz were as I'ollows: 
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-.- The ezfect  of  free  play  in  the  aileron  cm- 
t r o l   s y s t e x  i s  illzstrated in  figure 1.5 where the   f lu t te r   reg ion  is con- 
tained  within  the  boundaries shown. In   t h i s   f i gu re  it may be seen that 
the f l u t t e r  boundary  expands as the  free  play  increases.  

Sffect  of angle of attack.- Changing the angle of attack fkon the 
condition of zero l i f t ,  which had the  effect  of placing a preload on 
t h e  aileron,  eliminated the f lut ter   condi t ion - the amount of angle  of 
attack  required depenciing on the amount of free p lay   ex is t ing   in  the 
ai leron system.  (See f ig .  15.) 

Effect of aileron  viscous 8ampers.- Aileron  viscous damgers were 
tes ted  w i t h  the daxpers  connected t o  the aileron bel l  creak as shown i n  
figure I l ( a ) .  The f lu t te r   reg ion  and the  chmacter is t ics  of t h e   f l u t t e r  
w i t h  the daxpers i n  t h i s  gosit ion were substant ia l ly   the same as without 
kxpe r s .  The daxpers were then xoved t o  the position  outside the wir?g 
as shown in   f igure  ll(b), that is, mounted d i rec t ly  between the  aileron 
horn and the w b g  structure.  The f l u t t e r  regicm vas again  explored and 
it was found tha%, wlth  the dampers nounted d i r ec t ly   t o  the aileron, 
t h e   f l u t t e r  condLticn was completely  eliminated witZlin t h e   t e s t  lh-its. 

As previoasly  discusse&,  the  reason  for  tne  ineffectiveness of the 
dazers in   l imi t ing   a i le ron   f lE t te r  when connected t o  the b e l l  crank 
was the  f ree   play ar?d s t ruc tura l  compliance exis t ing between the aileron 
and the damper. These were reduced  considerably when t3e dampers  were 
connected d i rec t ly   to   the   a i le ron  horn. 

3:Pfect of aileron tabs. - I n  the co-wse of the wind-'tunnel t e s t s ,  
a i leron tabs (see f ig .  2(b)) were tes ted  to   invest igate   the  effect  of 
a preload on the  ailerons on the  Tlut ter   character is t ics  of the  ailerons. 
These tsbs were 28.5 percent of the  a i leron span m d  extended  rearward 
9/16 inch from the   a i l e ron   t r a i l i ng  edge. They were tested. both at 0' 
se t t ing  md  -5O, that is, t r a i l i n g  edge &own. At Oo se t t ing  the tabs 
cassed tke  ai leron  f lut ter   bomdary  to   be expanded s l igh t ly  while at 
-5O se t t i ng   t he   f l u t t e r  bo;mdaqJ was moved t o   s l i g h t l y  lower angles of 
attack. 

An investigation has been =de of the   f lu t te r   charac te r i s t ics  of a 
dynamically  scaled model of the X-LF: airplane w i n g .  The dynanic Drop- 
e r t i e s  of the  ful l -scale  X - 1 E  airplane wing and ai leron were well  dupli- 
cated i n  the l/&-scale model. No stall f lu t t e r   o r   c l a s s i ca l   f l u t t e r  was 
encountered. The c r i t i c a l  Mach  number and angle-of-attack ranges for  
the X - U  xodel  with  resgect to a i l e ron   f l u t t e r   o r  buzz appear t o  be from 
aboilt 0.9 t o  0.98 an& from lo t o  -bo, respectively. The e f fec t  of fkee t 



play  in  the  aileror-  control system on the  phqsical  properties of t he  
system was dn important  factor  influencing  aileron  flutter.  Aileron 
viscous m e r s ,  when mounted t o  the   a i l e ron   be l l  crank,  with Lfree play 
existing beeween the danpers  and the  aileron, proved t o  be  ineffective 
ill l i n i t i n g   a i l e r o n   f l u t t e r .  When the saxe viscous dempers were mounted 
d i rec t ly  between the  ailerol?-  and  the wing structure  with l i t t l e  or no 
free  play  existing, alleroll f l u t t e r   o r  buzz wzs coxpletely  elininated. 

- 
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TABLE I1 

COMPAXISON OF STIFFNESS CHUACTEFXSTICS OF l / h " S C A U  AND 

FuL;L-SC"X X-= WIXG AXD AILERON 

Full-scale 

x 1.5 
1/1: -scale 

model vshes 

Percect of 

i/k-sc&le model 
Psxane t e r  design  acquired Zn sceled  values 

Torsional 
s t  ir"1"nes s at 
wing tip, 
in-ib/r- d i a n  

53,800 52,600 97.8 

Bellding 
stiffness z t  
wing tip, 
l b  /in. 

94.5 308 326 

I Aileron 

Stiffness zt 
rocrt with 
control  colmn 

a25. 5 

in-lb/deg 
locked, 

- 21.3 
"54.2 

Stiffness et 
bell  crank 
with  control 

in-lb/deg 
colwvn locked, 

141 160 

~ 

"83.5 

a39 - 3 

88.1 

8T'nese values were found at &ifl"erent t i m e s .  Reason for  
discrepzncy could not be Ceterminecl. 
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Figure 1.- Density-altitude simulation for model of &LE airplane. 
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(a) Wing constructfon. 

Figure 2. - Details of full-scale X-lJ3 wing. 



(b) Sketch sbowing four-point  suspension of wing. 

- Figure 2. - Continued. 

. 





I 
I 
I"-- 
I 
I 
I 
I 
I 
I 
I 
I 

Wing station, in. 

Fuselage 

(a) Wing construction. 

Figure 3 .- Details of - scale model of X - U  airpltme. 4: 
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(b) Configuration of model. 

Figure 3. -  Continued. 
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( c )  Sketch of aileron control system. 

Fign-e 3.- Concluded. 



I I L I 

I ' \  

I 

01 torsion strain gages 

Strain  beam  position  indicators 

. ....=- line I I !  

L' Inductance-type 
positlon indicators 

Figure 11.. - Positions of instrumentation on 22 - scala model. 4 
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Figure 5. - Model w i n g -  mounted for ground testing. 
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Pigure 7. - Comparison of X-1E full-scale and scale  torsional r i g i d i t y .  4 -  
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Figilre 8.- Cmparison of X-1E full-scale and scale bending r ig id i ty .  
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(a) Right aileron spring cons L u n t  and free play. X-1E scale mdel. T -  

Figurc 9.- Characteristics of aileron system. 
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I 
(b)  Variation of amplitude and resonant frequency with excihhion force. X-1E - scale model 4: 

aileron control column locked a t  fuselage center line. 

Figure 9.- Continued. 
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(c) Variazion of frequency of rr-irru?  eileron  ressonse  with air s u e r  
c s c i l l a t i s n  mrcent f o r  verious amounts of f ree  play in r ight   a i leron 
system. X- IS  - scale model. 6 
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Figure 9 .  - Continued. 



NACA RM L5T15 

I 

Scaled  frequency, cps 

(d)  Cmpzrison of X - I E  ful l -scele  aad - - sca le  model a i leron 

frequency  response. 

Figure 9.  - Concluded. 
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-. y-~gure  10. - Sketch of - scale-model aileron damper. 6 
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Figure 11. - Damper in s t a l l a t ions  fo r  - scale model. 4 

L- 89'130.1 (a)  Damper mounted inside wing ( in te rna l  damper). 
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(b) lhnper mounted on under surface of wing (external 

Figure 11.- Concluded. 

L-930113 
damper) with fairing removed. 
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Figure 12. - X-1E - scale model mowbed on the sting  in the Langley 16-foot transonic  tunnel. F 
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Figure 13. - Test limits for 1, - scale X'-lE model in Langley 16-foot transonic tunnel. 4 
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Figure 14.- Typical oscillograph  record of ai leron buzz. M = 0.93; 
angle of  attack, -2'. 
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